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“The overall effect on aggregate employment seems ambiguous, depending on the stochastic struc-

ture of firm-level shocks. This being the case, evidence on the firm-level stochastic environment is

necessary.” Hopenhayn and Rogerson (1993)

1 Introduction

Heterogeneous firm models are at the center of modern macroeconomics and are nowadays routinely

used both for positive and normative analysis. Since the seminal contribution of Hopenhayn (1992),

this type of framework has increasingly been employed in macroeconomics to study, among others, the

contributions of entry and exit to aggregate job creation and destruction (Hopenhayn and Rogerson,

1993); the cyclical implications of firm entry and exit (Bilbiie et al., 2012; Clementi and Palazzo, 2016;

Lee and Mukoyama, 2018); the decline in business dynamism (Decker et al., 2016, 2020; Karahan

et al., 2022); the role of firm heterogeneity in shaping the dynamics of aggregate investment (Khan

and Thomas, 2008, 2013; Winberry, 2021); the propagation of financial frictions (Moll, 2014; Midrigan

and Xu, 2014; Ottonello and Winberry, 2020); the role of uncertainty shocks (Bloom et al., 2018);

and the drivers and consequences of the (mis)allocation of resources (Restuccia and Rogerson, 2008;

Hsieh and Klenow, 2009; Bento and Restuccia, 2017; Kehrig and Vincent, 2020). This broad family of

models has also been highly influential in the trade literature, drawing on the work of Melitz (2003).

In this paper, we revisit the standard assumptions regarding the key driving force in these mod-

els, namely the idiosyncratic shocks. Their importance was already recognized by Hopenhayn and

Rogerson (1993), as evidenced by the quote at the top of this page. Specifically, we show that the

common assumptions made in the literature to parameterize these shocks leads to firm-level distribu-

tions and dynamics that differ in important ways from what is observed in the data. Furthermore,

we demonstrate that these differences have a first-order impact on allocations when analyzing the

response of the model economy to aggregate perturbances. In what follows, we describe more broadly

these findings.

Leveraging a large, representative firm-level dataset, we first extract rich non-parametric distri-

butions and transition dynamics for revenue, and compare them to similar objects obtained under

the standard autoregressive process widely used in the literature, a Gaussian AR(1). We document a

number of facts that prove to be highly relevant for the modeling exercise. Broadly speaking, we note

that while the ergodic distribution of firm revenue is not strikingly different between the two models

(besides the well-known presence of fat tails in the empirical distribution), the dynamics are. For

instance, a firm initially in the middle of the revenue distribution has a much higher probability of

staying around the median or moving to the tails than implied under an autoregressive specification.

Conversely, conditional on firm revenue being in the tails of the distribution, the data reveal a greater

probability of returning towards the center than in an AR(1) model. These differences result in the

distribution of revenue growth in the data being leptokurtic, unlike that generated from the common
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AR(1) assumption.

What are the economic implications of these statistical findings? In any model, the expected

continuation value is ultimately the object that shapes the firm’s optimal decisions, such as whether

to exit or how much to hire and invest. Hence, in the second part of our data-driven exercise, we

generate model-free distributions of firm values (present discounted value of lifetime expected revenue)

based on the transition dynamics extracted empirically. We show that these approximations are very

different between the non-parametric and parametric models. In particular, we note that firm values

are much more clustered (that is, the probability density function is much steeper) for the non-

parametric version than under the AR(1) assumption. The reason is intuitive: the higher probability

of moving away from the tails and remaining around the center of the revenue distribution creates a

more pronounced compression of the distribution of firm values under the empirical, non-parametric

specification.

In the last part of the paper, we incorporate these new non-parametric findings into a canonical

general equilibrium heterogeneous firm dynamics model. The rich environment we consider features

shocks to firm-level profitability, fixed costs of operation, endogenous exit, and sunk entry costs. For

the non-parametric version of the model, our quantitative approach allows us to perfectly match a

number of empirical objects: (i) the transition matrix of revenue for incumbents; (ii) the exit hazard;

and (iii) the relative size distribution of entrants. For the parametric version, we follow the literature

in calibrating the AR(1) shock process and other parameters to match a number of moments. Aside

from the modeling of the idiosyncratic shock process, the two models are identical.

We then compare the impact in the two models to two types of policies: a fixed subsidy to each

operating firm or a subsidy to entrants.1 In both cases, the exit rate is much more responsive in

the non-parametric version. This is a direct result of the fact that firm values are more clustered for

low-revenue states, where exit is more likely to occur. Yet, we show that the response of aggregate

output to the fixed cost subsidy is 45% larger under the AR(1) shock process, but about one-third

lower in the case in which the subsidy is aimed at new entrants. That is, the impact of the higher

exit rate sensitivity on macro aggregates depends on the policy implemented. As we show, the reason

has to do with the role of selection.

Consider first the case of the subsidy to operating firms, which increases firms’ values, leading

to a decline in the likelihood of exit. As a result, selection worsens, as more low-productivity firms

survive. This negative selection effect is more pronounced in the non-parametric model, since the

density of firms around the exit thresholds is higher, which dampens the positive output response to

the subsidy relative to the AR(1) version. On the other hand, the entry subsidy generates an increase

in the steady-state rate of exit. As a result, selection improves, boosting output. Since the exit rate

responds more in the non-parametric version, so does output through the selection effect.

We view this paper as closely linked to three main strands in the literature. First it naturally

1These experiments mirror those found in Hopenhayn (1992).
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relates to the theory and empirics of firm dynamics (Dunne et al., 1989; Hopenhayn, 1992; Davis

and Haltiwanger, 1992; Kehrig, 2015; Clementi and Palazzo, 2016; Karahan et al., 2022). This litera-

ture has investigated how taking into account firm heterogeneity can help rationalize some empirical

stylized facts at both the micro and macro levels. Second, it relates to the literature contrasting em-

pirical and “conventional” distributions (Midrigan, 2011; Carvalho and Grassi, 2019; Forneron, 2020;

Guvenen et al., 2021; Sterk et al., 2021). We show that the common parametric assumptions used in

heterogeneous firm models are poor approximations of reality.

Third, our work relates to the allocative implications of policy and shocks in the presence of firm

heterogeneity (Hopenhayn and Rogerson, 1993; Guner et al., 2008; Restuccia and Rogerson, 2008;

Hsieh and Klenow, 2009; Davies and Eckel, 2010; Gourio and Miao, 2010; Asker et al., 2014; Garicano

et al., 2016; Catherine et al., 2018; Kehrig and Vincent, 2020; Ottonello and Winberry, 2020; Bils

et al., 2021; Sraer and Thesmar, 2021). We show that our empirical findings alter in a quantitatively

significant way the impact of different policies.

The rest of the paper is organized as follows. We start in Section 2 with the empirical analysis. In

Sections 3 and 4, we describe our model economy and discuss the approach used to incorporate a non-

parametric characterization of the idiosyncratic shock process. Section 5 contrasts the comparative

statics in our non-parametric model economy vis-à-vis the commonly calibrated parametric economy.

Section 6 presents supportive evidence in the cross-section of the model’s key prediction regarding

the positive relation between the clustering of firms’ present value distributions and exit probabilities

Finally, 7 concludes.

2 Empirical analysis of firm dynamics

In this section, we discuss the data used and our empirical approach. Drawing on a number of stylized

facts, we show that the commonly used parametric assumption has very different implications about

the firm-level distribution and dynamics of revenue than those generated from the data. These stylized

facts will be used to calibrate the heterogenous firms model presented in Section 3.

2.1 Data sources

We briefly present here the key aspects of the data used for the analysis and refer the reader to

Appendix A for a detailed discussion.

Our objective of capturing the rich firm-level heterogeneity requires us to have access to a dataset

that is representative of the population of firms. For our purposes, we rely on Bureau van Dijk’ ORBIS

database, accessed through a NBER data initiative. Drawing mainly from government tax records,

it contains a large number of firm-level economic and financial variables at yearly frequency for a

number of European countries. While in principle the database includes both private and publicly
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listed companies, coverage and representativeness varies greatly across countries. For presentation

purposes, our focus in this paper is on Spain between 2005 and 2014, but we also present results for

Italy (2008-2014), Portugal (2006-2014), France (2005-2014), and Norway (2007-2014).2 In earlier

work, Kalemli-Ozcan et al. (2022) and Bajgar et al. (2020) have shown that for these countries,

the information contained in ORBIS is consistent with the indicators derived from other firm-level

datasets. A particularly relevant comparison is with COMPNET, which provides micro-aggregated

moments based on firm-level datasets maintained by national statistical agencies or central banks.

While for presentation purposes our focus is generally on Spain in the body of the paper, we provide

evidence that our main findings are robust to the use of alternative countries.

2.2 Data preparation

The main variable of interest throughout our analysis is firm-level operating revenue.3 We proceed in

three steps. First, we estimate the revenue dynamics of incumbent firms from the data and compare

them to those obtained from a standard, properly calibrated AR(1) assumption. Second, we provide

evidence on the behavior of entrants and exiters. Finally, in the next section, we exploit these moments

to generate a distribution of firm values, computed as the present discounted flow of revenue. The

stylized facts we document, in addition of being of interest by themselves, will be crucial to ensure

that our calibrated model perfectly matches firm-level revenue dynamics (see Section 4).

Demeaning We first demean log revenue at the industry/year level before extracting the empirical

distribution and transitions. This ensures that our findings are not driven by systematic differences

across sectors, but instead by dynamics within industries. In other words, when we later study firm-

level revenue dynamics, we will implicitly be describing the behavior of firms located in a specific

2It is worth noting that while we in fact exploit data that goes beyond 2014, the latter years are only used to

minimize the occurrence of “spurious exit” due to gaps in the data. For example, consider a Spanish firm for which

data is available in the dataset for every year between 2005 and 2019, except between 2012 and 2016. In this case, the

presence of information beyond 2016 would ensure that we do not consider that the firm exited between 2011 and 2012.
3The variable is variable operating revenue turnover. A natural alternative would have been to study the dynamics

of cash flow (profits), as it is conceptually closer to the concept of flow return that is key to constructing the firm’s

value function, which will be central to our analysis. There are a number of reasons behind our decision. First, the

operating revenue variable in ORBIS is more consistently populated than cash flow measures across countries. Second,

using revenue will later allow us to transparently link the empirical object to the profitability shocks in the model.

Third, we show in Appendix A.1 that revenue is a better predictor of future exit and hiring decisions than profits

or earnings. This is consistent with the view in the literature that accounting profits are a poorly measured proxy

for economic cash flows. Also note that ultimately, our model calibration in Section 4 will by definition ensure that

the firm-level dynamics of revenue in the model are similar to those observed in the data. Finally, we also exploit

additional information for various purposes, such as profit (PL), earnings (EBIT and EBTA), employment (EMPL),

cost of employees (STAF ) or firm age. Later we provide additional information on our treatment of the data as well

as the size of the sample.
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portion of the distribution defined at the industry level. Specifically, let the level of revenue be Y ,

then demeaning is done by running the following regression:

ln(Yit) = yit = α + γjt + ϵit (1)

where yit is the natural log of operating revenue of firm i in year t, and γjt corresponds to industry×year

fixed effects. The subsequent analysis is based on the residuals from this regression, which we will

denote as ŷit.
4

Recovering the transition matrices First, we divide the distribution of (residualized) revenue

ŷ into a grid of size (Ny × 1) covering equal-weight intervals.5 This allows us to directly extract the

three non-parametric objects of interest from the data. Specifically, we compute:

1. The empirical transition distribution for incumbents

H(ŷ′|ŷ) (2)

2. The distribution of revenue for entrants

HE(ŷ) (3)

3. The exit hazard for incumbents

P(Exit|ŷ) (4)

The non-parametric version of our quantitative model in Section 4 will exactly match these em-

pirical revenue patterns by construction.6

Calibrating the AR(1) process Our objective is to compare the properties of the empirical

revenue distribution to that generated by a parametric AR(1) specification ŷ′ = ρŷ + σN(0, 1) that

is standard in the literature. To this aim, we calibrate two parameters of interest (the persistence, ρ,

and standard deviation of innovations, σ) to match the autocorrelation and unconditional variance of

ŷ for incumbents. For Spain, we use ρ = 0.9415 and σ = 0.1908.

4We have verified that our conclusions are similar if we solely demean by industry, solely demean by year, or only

take out the unconditional mean.
5We verified that the number of grid points Ny was high enough that our results were invariant to increasing or

decreasing it in the vicinity of 101. As such we let Ny = 101.
6In order to embed H, HE , and P (Exit|ŷ) into a canonical heterogeneous-firms model, each needs to be adjusted

in order to satisfy some standard technical assumptions employed by that literature. These assumptions ensure mono-

tonicity of firm value functions and internal consistency of firm exit policies. See Appendix A for more details and a

comparison of the original and adjusted objects. The main takeaway is that the required adjustments are minor and

in most cases barely discernible.
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2.3 Firm-level revenue distribution and dynamics: data vs. AR(1)

We now turn to comparing the properties of the firm-level transition dynamics under the non-

parametric and AR(1) specifications. Before doing so, we reproduce in Figure 1 the stationary

distributions of the residualized logged revenue ŷ.

Figure 1: Ergodic distribution of firm-level revenue
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Notes: This figure depicts the ergodic distribution of log y in the empirical distribution and that implied by

the AR(1) parameterization.

While the empirical distribution displays somewhat fatter tails, the differences with its AR(1)

counterpart are not particularly striking. Specifically, the standard deviation, skewness and kurtosis

of log(ŷ) are respectively 1.55, 0.025 and 4.196 for the empirical distribution compared to XX, 0

and 3 by definition under the autoregressive process. This suggests that the AR(1) specification is

an acceptable approximation of the actual revenue distribution found in the data. We also show in

Appendix A.3 that the empirical distribution of revenue features a Pareto tail, in line with evidence

from the large literature on firm size distribution (e.g. Axtell (2001)). As we show next, differences

are much more pronounced once we focus on transition dynamics.
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2.3.1 Transition dynamics of incumbents

Figure 2 depicts the density of the transition probabilities of H(ŷ′|ŷ), conditional on ŷ being at its

median value. This figure shows that the empirical distribution is characterized by fat-tail leptokurtic

dynamics; the differences between the empirical and AR(1) transitions are much more striking than

for the ergodic distribution of log revenue.

Specifically, conditional on being initially at the median value of ŷ, the probability of remaining

around the median is much higher than under the calibrated AR(1) specification. Yet, given the

nature of the fat-tail dynamics, the empirical distribution also features a higher likelihood of moving

to the tails from the median.

Figure 2: Transition away from the center of the revenue distribution
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Notes: This figure depicts the density of log y′ conditional on y being at its median value.

2.3.2 Transition from the tails

Next, we study the likelihood that a firm lands in the middle of the distribution given its initial

position in the revenue distribution. Specifically, we plot in Figure 3 the probability that the firm

transitions to the third quintile of the revenue distribution as a function of its current residualized log

revenue, ŷ. The picture that emerges is clear: for firms currently around the median industry revenue

(i.e. ŷ = 0), the probability of remaining in the third quintile is much higher in the empirical model.
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Similarly, conditional on being in the tails of the distribution, the probability of moving towards the

center of the distribution is significantly higher in the empirical model, particularly for adverse states.

Figure 3: Transition towards the center of the revenue distribution
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Notes: This figure depicts the probability that log y′ is in the 3rd quintile as a function of y.

2.3.3 The distribution of growth rates

Finally, Figure 4 depicts the pooled distribution of the growth rates of revenue. It shows that the

empirical dynamics discussed earlier generate a leptokurtic growth distribution: larger probabilities

of very negative and positive growth rates, with higher density around zero growth than its AR(1)

counterpart. More precisely, we find that the standard deviation, skewness and kurtosis of the revenue

growth rates are respectively 0.656, -0.312 and 29.212 for the empirical distribution. In contrast, under

the AR(1) calibration, the counterparts to these moments are XX, 0 and 3. Thus, while in levels the

differences were not quantitatively meaningful, the distributions of growth rates are strikingly distinct.

We show in Table A.2 of Appendix A.4 that this conclusion holds for a large array of alternative

treatments of the data as well as other countries.
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Figure 4: Revenue growth rates
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Notes: This figure depicts distribution of the growth rates of log(y)

2.3.4 A richer autoregressive specification

One potential concern is that the differences we document between the empirical and parametric

cases are the result of features that are not embedded in the basic standard AR(1) model. In this

section, we show that a richer specification that includes (1) firm fixed effects (permanent types) and

(2) i.i.d. measurement error is not sufficient to allow this type of model to perform as well as the

nonparametric counterpart.

Specifically, we consider an augmented AR(1) specification in which the evolution of log revenue

is given by

ŷi
′ = ỹi

′ + σ̃N(0, 1) where ỹi
′ = αi + ρỹi + σ̂N(0, 1). (5)

In the equation above, αi denotes a firm fixed effect – which we assume follows a Pareto distribution –

and σ̃ corresponds to the standard deviation of the measurement error. We estimate this augmented

AR(1) model with an SMM exercise targeting the autocorrelation of revenue, the variances of revenue

and revenue growth, the top 1% revenue share, and mean revenue.

The first column of Table 1 reports the average root mean squared errors (RMSEs) of the one-

year ahead forecast for the three specifications: empirical, AR(1) and augmented AR(1). While the

predictive performance of the augmented AR(1) is better (lower RMSE) than that of the basic AR(1)

specification, it still clearly underperforms our nonparametric statistical model.7

7Note that by definition, the nonparametric specification predicts perfectly log revenue at a one-year horizon.
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For the results found in the second column, we instead computed the one-year-ahead log predictive

score (LPS) for each specification. The LPS allows us to account for the predictive fit across the whole

density, and not only the mean. In this case, a higher LPS denotes better forecasting performance.

Again, while the augmented model outperforms the standard autoregressive specification, it falls short

of the nonparametric statistical model.

To summarize, our findings indicate that augmenting the AR(1) specification with off-the-shelf,

standard features such as firm fixed effects and measurement error does not eliminate the superior

performance of the nonparametric version. Next, we show that these statistical differences have first-

order consequences on the key object of interest in heterogeneous firm models: the distribution of

firm values.

Table 1: Relative Model Performance at One-year Horizon

Model RMSE LPS

Nonparametric 1 -3.25

AR(1) 1.033 -3.7

Augmented AR(1) 1.021 -3.6

Notes: This table reports the average Root-Mean-Squared-Error

(RMSE) and Log Predictive Score (LPS) for one-year-ahead forecasts

computed using the empirical non-parametric, AR(1) and augmented

AR(1) specifications (see the text for details). The RMSE values are

normalized to equal 1 for the nonparametric model.

2.4 Firm values

In any firm optimization problem, the firm makes decisions to maximize its continuation value. As we

will show later, exit decisions will be central in understanding the results of our comparative statics

in a heterogeneous firms model. Yet, before going to the model, we exploit the empirical findings

from Section 2.3 to construct a distribution of firm values, defined as the present discounted value of

the expected stream of lifetime revenue. This exercise is solely based on information extracted from

the data and, hence, is not model-dependent.

Let W (y) denote the value of the firm, defined as the expected lifetime stream of revenue. It can

be characterized by the following Bellman equation

W (ŷ) = ŷ +

(
1− P(Exit|ŷ)

R

)∫
W (ŷ′)dH(ŷ′|ŷ). (6)

where 1
R
denotes the firms’ discount rate. That is, the firm value equals current (normalized) revenue,

ŷ, plus the firm’s continuation value, which is itself pinned down by expected revenue conditional on
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not exiting.8

The empirical value function W (ŷ) at each grid point can be obtained iteratively by relying on

two objects that we extracted earlier from the data: the transition distribution H(ŷ′|ŷ) and the exit

hazard P(Exit|ŷ). To construct the ergodic distribution of firm values, all we need in addition to

W (ŷ) is the ergodic distribution of the state variable ŷ which can be computed as:

H(ŷ′) =

∫
H(ŷ′|ŷ) (1− P(Exit|ŷ)) dH(ŷ) + P(Exit)HE(ŷ

′) (7)

where P(Exit|ŷ) and HE(ŷ
′) match exactly their data counterparts. Note that for the last term, we

rely on the fact that in steady state, P(Exit) = P(Entry).
To begin, Figure 5 plots the ergodic distribution of the lifetime revenue valueW (ŷ) in the empirical

versus the one implied by AR(1) incumbent transitions. Note that in order to highlight the role played

by differences in the dynamics of incumbents, we feed to the AR(1) model the empirical entry/exit

distribution. Hence, any change in the resulting lifetime revenue distribution is due to the differences

in the incumbent transitions.

Figure 5 highlights our key empirical result: the empirical distribution of firm values is more

clustered than the one implied by a standard AR(1) model, particularly to the left of the median:

for lower firm values, the slope and height of the density function is much higher and steeper in the

empirical version. This is particularly striking when we recall that the non-parametric and AR(1)

ergodic distributions of revenue were found earlier to be quite similar (see Figure 1). This apparent

disconnect is a consequence of the strong differences between the transition dynamics implied by an

AR(1) process and those found in the data.

8Note that we rely on revenue, not cash flow as in a standard value function. As discussed earlier, the revenue

variable is generally more populated in the data and, as shown in Appendix A.1, a better predictor of firms’ exit and

hiring decisions. Ultimately, we will show in Section 3 that the broad conclusions are similar once we analyze instead

the present discounted value of cash flows from our structural model.
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Figure 5: Ergodic distribution of firm values (PDV of revenue)
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Notes: The figure depicts the density of the present discounted value (PDV) of firm revenue.

Finally, we present in Table 2 empirical that support the empirical validity of the firm values

constructed above. Specifically, for each firm in our dataset, we regress its log market value as

reported in the ORBIS dataset on current log revenue and our constructed lifetime revenue measure.
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Table 2: Lifetime Revenue vs Market Value

(1) (2) (3) (4)

log Market Valueit

log Revenueit 0.284*** 0.141*** 0.141*** -0.057

(0.029) (0.018) (0.018) (0.036)

log Lifetime Revenueit 0.362***

(0.076)

Fixed Effects - Ind. Ind., Ind.,

Year Year

Firm-Years 4273 4273 4273 4273

Note: The table reports OLS estimates of market value for Spanish firm i in year t on revenue and

the expected lifetime revenue PDV measure. Ind. refers to four-digit industry codes. Unconditionally,

corr(ln Rev., ln Mkt. Val.) = 0.24 and corr(ln Lifetime Rev., ln Mkt. Val.) = 0.27. Standard errors

are clustered at the firm level. * = 10% level, ** = 5% level, *** = 1% level.

As is evident from Table 2, the contemporaneous log revenue (columns 1-3) is associated with the

firm’s market value. Yet, our constructed firm lifetime revenue variable is a much better predictor of

the firm’s log market value (column 4) and, once it is included in the regression, contemporaneous

revenue ceases to be statistically significant. Overall we view these results as validating the empirical

relevance of our firm value measure.

In sum, our results so far show that matching the distribution of revenue (or firm size) is not

sufficient to ensure that the distribution of firm values, which is central to firm optimization, is close

to its empirical counterpart.9 As we illustrate in later sections, inadequately modeling this distribution

of firm values has first-order consequences for the predictions of heterogeneous firms models.

9We note that this conclusion also applies to models that solely rely on permanent firm types in order to match

the cross-sectional stationary distribution, such as in the trade literature: matching the size distribution of firms while

disregarding the role of transition dynamics will not necessarily imply that the firm value distribution is adequately

modeled.
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3 Model

We begin with a stylized illustration of the main intuition built around the concept of distribution of

firm values. We then proceed by describing our quantitative model.

3.1 A stylized example

To gain some intuition about the impact of the distribution of firms values on different compara-

tive statics, we consider in Figure 6 a stylized example. Specifically, panel (a) depicts two distinct

probability density functions of firm value: one labeled “Empirical” and the other “Parametric”.

The vertical line indicates the continuation value that makes a firm indifferent between exiting and

continuing operating. The two distributions are constructed such that the fraction of exiters (the

overall mass to the left of the vertical lines) is identical and equal to 10%. Note that the empirical

distribution is more clustered around this exit region, in line with our empirical findings.

Figure 6: Stylized example of the impact of a subsidy

(a) (b)

(c)

Next, consider the introduction of a government subsidy that is given to all operating firms. The

subsidy simply shifts the distribution of firm values horizontally to the right. Such shifts are depicted

in panel (b) for the more disperse (parametric) distribution, while panel (c) illustrates it for the

bunched (empirical) one. As is clear visually, the mass of firms to the left of the vertical line, i.e. the
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exit rate, falls much further in the case of panel (c) than panel (b). As we will formally show later

on, this sensitivity of the exit rate is directly linked to the level of the probability density function

(pdf) in the area of the support of firm values where exit occurs.

Naturally, in our full general equilibrium model other active forces would vary across the two

distributions in response to such a comparative change. Next, we describe and solve such framework.

3.2 A general equilibrium model with heterogeneous firms

Our model is in the spirit of Hopenhayn (1992), Hopenhayn and Rogerson (1993) and the literature

that followed them. We first describe its various components before discussing calibration in the next

section.

Types of firms The economy is populated by three types of firms: incumbents, entrants, and

exiters.

The mass of operating firms in a given period is composed of incumbents and entrants and is

denoted by MO. Each operating firm produces a homogeneous numeraire output good and hires

undifferentiated labor at a competitive equilibrium wage. Each period, it faces an idiosyncratic

profitability shock z and must pay a fixed cost of operation. The shock z follows a first-order Markov

chain with transition distribution F (z′|z) and stationary distribution F (z).

Entrants, whose mass is denoted by ME, decide to enter by comparing the sunk entry cost to the

expected value from producing. Upon entry, they draw a profitability level from a predetermined

distribution and must produce for at least one period.

Finally, each period an operating firm decides whether to cease operations by comparing the fixed

operating cost to the expected continuation value, which is itself a function of the current profitability

shock and its expectation about the stochastic evolution of these shocks.

Dynamic problem of operating firms Next, we formally define the firms’ dynamic problem

and the household side of the model, before specifying the timing in this economy and its stationary

equilibrium.

Specifically, consider an operating firm faced with an idiosyncratic profitability shock z; stochastic

fixed costs iid distributed ϕF ∼ G(ϕF ); an option to exit with value 0; an exogenous exit hazard

δ ≥ 0; a decreasing-returns-to-scale production function with labor input n, which is given by znα;

and the wage, W , which it takes as given. Then, its dynamic problem is given by

V (z) = max
n

[znα −Wn+ EϕF
max {0,−ϕF + β(1− δ)E (V (z′)|z)}] . (8)

where next period is discounted at the discount rate β.

We note that this decreasing returns-to-scale production function specification is isomorphic to a

monopolistic competition framework with love of variety. None of our results depend on which of the
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two formulations is chosen. This is also why while we could refer to z as “productivity” for the sake

of simplifying the exposition and consistency with the literature, we prefer to use the broader term

“profitability” for the z process.10

Entry A mass of potential entrants can pay a sunk cost ϕE > 0 for a draw z ∼ FE(z) to become

incumbents. Free entry implies that with positive entry (ME > 0)

ϕE =

∫
V (z)dFE(z). (10)

where we note that firms are drawing from the entrants’ distribution of profitability shocks, FE(z).

Upon entry, firms produce for at least one period before deciding whether they wish to remain or exit.

Exit At the end of the period, after production has occurred, each firm draws a new operating cost,

ϕF > 0. The firm then optimally decides to exit if

ϕF > β(1− δ)

∫
V (z′)dF (z′|z)

The exit condition above implies that for each value of z, there exists a threshold operating cost ϕ∗
F (z)

defined as

ϕ∗
F (z) = β(1− δ)

∫
V (z′)dF (z′|z) (11)

such that exit occurs if ϕF > ϕ∗
F (z). In addition, firms face an exogenous probability to exit δ. This

feature allows us to match the fact that empirically, even very large firms face a positive probability

of exit.

Households The economy is populated by a measure one of identical households. Households

consume, pay taxes (if applicable) and supply labor inelastically in the total amount N̄ . In addition

to labor income, they also receive dividends from operating firms. The representative household

chooses its consumption to maximize log utility. Its dynamic problem is simply given by

S = max
C

{log(C) + βS ′} (12)

with time discount rate 0 < β < 1, subject to a standard budget constraint.

10In order to match the revenue dynamics we do not need to take a stand on whether the driving shocks are supply

or demand shocks; the revenue function in such a model is given by

Revenue = zν−1ℸνAggregates, (9)

where z and ℸ respectively denote idiosyncratic productivity shocks and demand shocks.
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3.3 Timing

To summarize, the timing of the model is as follows:

1. New entrant firms pay entry costs.

2. Incumbent firms and new entrants in period t receive an idiosyncratic productivity draw z. The

entrants draw their productivity shocks from the distribution FE(z), while the incumbents draw

them according to the transition distribution F (z′|z).

3. The operating firms (incumbents and entrants) produce using z and labor n which is hired at

the prevailing wage W .

4. Operating firms draw a fixed cost ϕF ∼ G(ϕF ).

5. Operating firms form expectations of continuation values and choose either to exit at the end

of period or to remain in operation for next period. Operating firms that choose to remain pay

the fixed cost drawn.

6. A fraction δ of operating firms exogenously ceases to exist.

7. Surviving operating firms become incumbents for the next period.

3.4 Stationary equilibrium

A stationary equilibrium is a value function V (z), threshold function ϕ∗
F (z), a distribution of operating

firms FO(z), a mass of operating firmsMO, a mass of entrant firmsME, aggregate output Y , aggregate

laborN , aggregate fixed costs ϕF , aggregate sunk costs ϕE, aggregate fixed subsidy costs SF , aggregate

entrant subsidy costs SE, and a wage W , such that the following conditions hold.

1. Optimality of firms’ decisions: Taking as given the wage, W , and intertemporal price, p, to-

gether with the distribution of fixed costs G(ϕF ) and the transition distribution for productivity

z, operating firms optimize according to Equation 8.

2. Optimality of exit decisions: The fixed cost thresholds ϕ∗
F satisfy intertemporal optimization

for the firms according to

ϕ∗
F (z) = β(1− δ)

∫
V (z′)dF (z′|z)

3. Stationarity of the distribution: The operating distribution FO replicates itself across peri-

ods according to

MOFO(z) = (1− δ)MO

∫
G(ϕ∗

F (z−1))F (z|z−1)dFO(z−1) +MEFE(z)
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4. Stability of operating firms: The mass of operating firms is stable across periods, satisfying

MO = (1− δ)MO

∫
G(ϕ∗

F (z−1))dFO(z−1) +ME

5. Free entry condition: The free entry condition holds for the mass of entrants ME, i.e.,

(ϕE − sE) ≥
∫

V (z)dFE(z),

with equality whenever there is positive entry, ME > 0.

6. Household intertemporal Euler condition: The representative household’s intertemporal

optimality implies,

R =
1

β

7. Definition of aggregate output: Output Y is given by aggregation of output across the

operating firm distribution

Y = MO

∫
y(z,W )dFO(z)

8. Aggregate labor market clearing: Labor N is given by aggregation of labor across the

operating firm distribution

N = MO

∫
n(z,W )dFO(z)

and is equal to inelastically supplied labor supply N̄ .

9. Definition of aggregate fixed cost: The fixed cost aggregate ϕF reflects the mass of operating

firms and their continuation decisions

ΦF = MO

∫ ∫
{ϕF≤ϕ∗

F (z)}
ϕFdG(ϕF )dFO(z)

10. Definition of aggregate sunk entry cost: The sunk entry cost aggregate reflects the mass

of entrant firms

ΦE = MEϕE

11. Aggregate resource constraint: The resource constraint or goods market clearing conditions

is satisfied

Y = C + ΦF + ΦE

4 Calibration

In this section, we describe our calibration strategy for both the empirical/non-parametric and para-

metric AR(1) models.
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4.1 Non-parametric model

To guarantee consistency with the distributional dynamics found in the data in Section 2, there are

three objects which we must match: (i) the revenue transition distribution, H(ŷ′|ŷ), (ii) the entrants’
revenue distribution, HE(ŷ), and (iii) the exit hazard P(Exit|ŷ). We match these empirical patterns by

manipulating the following model objects: (i) the profitability shock transition distribution F (z′|z),
(ii) the entrants’ profitability distribution FE(z), (iii) the distribution of fixed cost shocks G(ϕF ), and

(iv) the exogenous exit rate δ.

The crucial step in mapping the observed revenue dynamics into statements about the driving

profitability shock z it to note that in this specification of the model, there is a simple inversion from

the profitability shock z to sales y based on the static labor optimality condition; incorporating the

labor demand obtained from the static optimization problem

max
n

znα −Wn

into the production function y = znα, it follows that

log z = (1− α) log y + Constant. (13)

Hence, all our findings regarding the dynamics of residualized log revenue ŷ are also statements

about the driving profitability shock in the model, log z, up to a normalizing constant. Given the one-

to-one mapping between z and ŷ, it follows that the exogenous transition distribution for incumbents

(F (z′|z)) and the exogenous profitability distribution of entrants (FE(z)) are direct analogues of

the estimates obtained in Section 2, H(ŷ′|ŷ) and HE(ŷ). We then match the empirical exit hazard

P(Exit|ŷ), which has an endogenous model counterpart P(Exit|z), by non-parametrically computing

the fixed cost distribution G(ϕF ) satisfying the identity 1 − (1 − δ)G(ϕ∗
F (z)) = P(Exit|z) within the

model, taking into account the firm continuation values ϕ∗
F (z) optimally implied by the full structure

of the model in equilibrium. While computing G(ϕF ), we assume that the largest firms in the data

exit for only exogenous reasons, an assumption allowing us to recover δ = P(Exit|ŷNy) directly from

the data. We refer the reader to Appendix B for further details on our solution of the model and our

associated recovery of the distribution G(ϕF ).

By solving the non-parametric model in this manner, we recover a general equilibrium in which

incumbent revenue transitions, the entrant revenue distribution, and the exit hazard within the model

exactly match their empirical counterparts. Consequently, we also match all empirical moments of

these distributions, e.g., the unconditional exit rate, the distribution of firm lifetime revenue values

W (ŷ), the relative size of entrants, the auto-correlation and variance of revenue, etc.

Four parameters, α, β, ϕE, and N̄ , remain to be calibrated. We internally choose these parameters

to match the mean labor share (equal to α), the mean real interest rate (pins down β), the employment
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rate (equal to N̄) and mean employees per firm (pins down ϕE).
11 The column denoted ”Empirical”

in Table 3 reports these values.

4.2 Parametric AR(1) model

To calibrate the AR(1) model, we follow the standard approach in the literature. We assume that

the shock z follows

log z′ = ρ log z + σϵ′, ϵ′ ∼ N(0, 1), (14)

where ρ and σ are chosen to match the auto-correlation and unconditional variance of log revenue for

incumbents. We assume the fixed operating cost ϕF is drawn from a uniform distribution

G(ϕF ) = U(0, ϕ̄F ), (15)

Finally, we model the entry distribution as

log z ∼ N(µE, σ
2). (16)

In Appendix B, we plot the exit hazard and the entry distribution for the two models, parametric

versus non-parametric.

We are left with three parameters to calibrate: ϕ̄F and µE, which are specific to this version of

the model, as well as ϕE and N̄ as above. They are chosen to jointly match the following three

moments: the number of employees per firm; the average exit rate; and the mean difference in log

revenue between entrants versus incumbents. The column denoted ”AR(1)” in Table 3 reports these

values.12 In addition, the coefficients for the log z process are ρ = 0.9415 and σ = 0.1908.

11The two first parameters are commonly calibrated in the macroeconomics literature. With respect to, ϕE , we note

that “the mean employees per firm” is informative about it because increases in this sunk cost lead to a higher firm

value via the free entry condition. This rise in the firm value must be accompanied by a decline in the wage rate,

which raises the firm-intensive margin of labor demand and thus affects the mean employees per firm. And setting the

value of total labor supply N̄ to equal the aggregate employment rate is essentially a normalization defining the units

of labor.
12Three parameters (α, β and δ) are common to the two models and set externally, before solving the model.
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Table 3: Values of the calibrated parameters under both models

Moments Parameters

Description Value Empirical AR(1)

Labor share 2/3 α = 2/3 α = 2/3

Real interest rate 4% β = 1/1.04 β = 1/1.04

Exogenous exit rate 3.8% δ = 0.038 δ = 0.038

Average exit rate 6.9% (by construction) ϕ̄F = 2.3

Employment rate 59.7% N̄ N̄

Employees per firm 12.3 ϕE = 22.9 ϕE = 5.18

Relative profits of entrants -26.7% (by construction) µE = −0.44

4.3 Model-implied distribution of firm values

Before turning to the comparative statics, we plot in Figure 7 the distribution of firm values (that

is, the continuation values
∫
V (z)dFE(z)) under the two calibrated models. The difference is striking

and the message is in line with that from the model-free, revenue-based lifetime value estimates that

we obtained earlier (see Figure 7): at low firm values, where most exit occurs, the model-implied

distribution is much more “bunched” (the probability density function is much higher and steeper)

in the empirical than the AR(1) version. As we show next, the shape of the distribution of firm

values plays a crucial role in explaining the differences between the two models’ response to aggregate

disturbances.13

13We note that in Figure 5 we plotted the lifetime firms revenues under the non-parametric process (the red line)

against the one generated when only the incumbent transitions are assumed to follow an AR(1) process. In contrast, in

the calibration of the AR(1) model, we calibrate the exit process and entry distributions in a way that is comparable

with the approaches used in the existing literature that follows parametric assumptions.
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Figure 7: Ergodic distribution of firm values in the benchmark models
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Notes: This figure depicts the ergodic distribution of firms PDV in the benchmark non-parametric (red line)

and AR(1) models (blue line).

5 Comparative statics

Our goal in this section is to assess the quantitative relevance of our empirical findings for the pre-

dictions of heterogeneous firms macroeconomic models. We consider the impact on the steady state

of two simple experiments: (i) a subsidy to all operating firms, and (ii) a subsidy only to new en-

trants. These experiments mirror the changes in the fixed operating cost and the sunk entry studied in

Hopenhayn (1992). Under each scenario, we compute and analyze the response of various aggregates,

taking into account general equilibrium effects.

Via these experiments we show that our empirical findings have, quantitatively, a first order

impact on the response of aggregate to changes in the economic environment. In essence, and with an

abuse of a definition, we show that our non-parametric model, changes the ”elasticity” of the model;

this elasticity depends on the interactions between the various forces at play and, in particular, the

selection effect. Thus, the change in the elasticity has a significant impact on the transmission of an

aggregate perturbance on the economy. Specifically, we show that (i) this elasticity change has a first

order impact quantitatively, and moreover that (ii) whether it magnifies or attenuates the aggregate
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perturbation depends on the exact experiment we consider; hence this change in elasticity alters the

relative responses across the two models and the two experiments we consider.

5.1 Subsidy to fixed operating costs

In our first experiment, we introduce a fixed subsidy that is given to all firms at each period. The

subsidy, which ultimately lowers the fixed operating cost, is financed through lump sum taxes on

households.

5.1.1 Basic mechanism

In both models, the mechanism behind the response of the economy is qualitatively similar. We start

by providing a general overview of the forces at play.

First, the subsidy, sF , naturally raises the value of every operating firm, V (z,W, ϕF − sF ). This

leads to a decrease in the exit rate and a negative selection effect as lower-z firms now survive.

Consider next the expression for the free-entry condition:

ϕE =

∫
V (z,W, ϕF − sF )dFE(z)

The entry sunk cost ϕE on the left-hand side is constant in this experiment. Therefore, in order to

satisfy the free-entry condition, the wage W has to increase to counter the rise in firm value from the

fixed cost subsidy sF .
14

The equation below, which characterizes the labor market clearing condition, has in turn impli-

cations for the mass of operating firms. This equation shows that the overall labor employed in the

economy can be characterized as a product of the mass of operating firms, MO and the average labor

per firm,
∫
n(z,W )dFO(z),

N = MO

∫
n(z,W )dFO(z).

The higher wage depresses labor demand at each level of z, n(z,W ). In addition, the negative selection

pushes down average labor per firm.15 Together, these two forces lower the term under the integral.

Since the labor level N is fixed in equilibrium given fixed labor supply, the mass of operating firms,

MO, must rise with the subsidy to compensate for the fall in the number of employees per firm.

In this economy with fixed labor supply, the wage, output and TFP must move proportionately.16

14Recall that firms enter based on an expected continuation value: only after entry do they learn their productivity

level, produce and then can choose to exit. For this reason, there is no selection through entry.
15Formally, with one cutoff exit this would manifest itself as a reduction in the lower bound of the integral. Given

that we have exit occurring at different levels of z, due to the randomness in the fixed cost of operation, this argument

maps to lower levels of z surviving for a given level of the fixed cost of operation.
16To see why, note that the optimality condition of the firm dictates that n = αy/W . Integrating over the mass of

operating firms, we therefore obtain in the aggregate that Y = WN
α , where N is equal to the fixed labor supply in

equilibrium. Moreover, TFP = Y
Nα .
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Hence, it follows that TFP increases with the fixed cost subsidy, despite the negative selection effect

through lower exit; this is because the economy is now composed of a larger mass of operating firms,

but of smaller size; through decreasing returns to scale, the presence of smaller firms pushes up TFP.

5.1.2 Model comparison

Despite a similar underlying mechanism, the two models produce quantitatively very different re-

sponses. This can be readily observed from Figure 8, which depicts the response of various aggregate

variables to different levels of the firm subsidy (on the x-axis, as a percentage of the fixed operating

cost).17 The response of output, for example, is about 45% larger in the parametric AR(1) model than

under the non-parametric specification. As we show next, the key reason behind this discrepancy is

the role of selection through the response of the exit rate, which is much more pronounced in the

non-parametric case.

Figure 8: Impact of a fixed operating cost subsidy
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Note: This figure depicts the impact of a fixed operating cost subsidy in the non-parametric model (red line)

and the AR(1) models (blue line).

To gain intuition, we turn to Figure 9. Both panels consider the partial equilibrium response of

17Note that the size of the fixed cost as a fraction of output is the same in the two economies.
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the economy (by holding the wage fixed) following the fixed cost subsidy. Specifically, the panels plot

three main objects following the subsidy introduction: the original distribution of firm value (blue),

the distribution following a 15% fixed cost subsidy (green) and the exit hazard (red). In addition, the

vertical bar depicts the average firm value implied by the corresponding value distribution. The top

and bottom panels correspond to the non-parametric and parametric specification, respectively.

Figure 9: Value distributions and exit hazards - Fixed operating cost subsidy
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Note: For each model: original distribution of firm value (blue), distribution following a 15% fixed cost

subsidy (green), exit hazard (red) and average firm value (blue and green vertical bars).

The subsidy leads to a rightward shift of the value distribution. As a result, the average firm

value rises in both models, an increase represented by the horizontal shift from the blue to the green

vertical bars. The increase, however, is much more pronounced in the parametric case, even though

the subsidy is the same in both cases. The reason has to do with the very different impact of selection

in the two models: as discussed above, in both models the subsidy leads to a lower rate of exit and the

survival of more low-productivity firms. This negative selection effect, however, is more acute for the

non-parametric model: through their interaction, the shapes of the exit hazard and value distribution

imply a stronger decline of the exit rate in the empirically-relevant version and therefore a larger

negative selection effect which, in turn, significantly reduces the increase in the average firm value. In

contrast, the selection effect is much weaker in the AR(1) specification, allowing average firm value
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to rise by more thanks to the subsidy. This implies different wage responses between the two models:

in order for the free-entry condition to hold, the wage increase has to be more pronounced in the

parametric model since the fixed-wage average firm value rises by more. This is what can be observed

in Figure 8.

As discussed earlier, both the rise in the wage and negative selection reduce the average labor per

firm. Since the labor supply is fixed, the implication is that the reaction of the mass of operating

firms is also comparable: in both cases, MO increases sharply with the size of the subsidy, where re

remind the reader that the labor market clearing condition is given by,

N = MO

∫
n(z,W )dFO(z).

But how does the response differ across models? On the one hand, the larger wage increase in the

parametric model implies relatively lower demand for labor on average across operating firms. On the

other hand, the negative selection effect, which pushes down average labor per firm, is less pronounced.

It turns out that for this exercise, these two opposing forces work in a way that they almost perfectly

cancel each other (bottom-right panel of Figure 8). Hence, the impact of the subsidy on the integral in

the equation above is very similar across the two models, leading to similar increases in MO (top-right

panel of Figure 8).

We are now equipped with all the necessary elements to understand the forces behind the response

of TFP and therefore output, which are proportional to each other. For each model, we can decompose

the response of aggregate TFP into two margins. Formally, TFP in this model can be written as:

TFP = M1−α
O︸ ︷︷ ︸

Mass of operating firms

(∫
z

1
1−αdFO(z)

)1−α

︸ ︷︷ ︸
Selection

. (17)

In Figure 10, we plot the contribution of each of these two components to the change in TFP (red

line). As discussed above, the response of the mass of operating firms to the subsidy is very similar

across the two models, and this is confirmed in the figure (see the line depicting MO). Selection,

however, has a much more pronounced negative impact in the non-parametric model, due to the

stronger fall in the exit rate. This stronger negative selection effect in the non-parametric model leads

to a muted response in TFP and output vis-a-vis the parametric model.
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Figure 10: Aggregate TFP Decomposition - Fixed operating cost subsidy
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Notes: This figure depicts the contribution of various margins to the change of TFP in the two models under

various values of the fixed operating cost subsidy.

5.2 Entry subsidy

Our next comparative experiment is one where a subsidy (financed by lump sum taxes) is given

to entrants. As we discuss below, the relative aggregate response across the two models is flipped

vis-a-vis the case of the fixed operating cost subsidy analyzed in the previous section.

5.2.1 Basic mechanism.

Consider the expression for the free-entry condition:

ϕE − sE =

∫
V (z,W, ϕF )dFE(z)

The subsidy sE effectively lowers the cost of entry. Hence, for the free-entry condition to be satisfied,

the wage W must increase to bring V down such that the right-hand side (the value of entry) is lower.

Higher wage and lower V , in turn, makes exit more likely for low-z operating firms, generating a

positive selection effect.

Next, let us turn to the labor market clearing condition:

N = MO

∫
n(z,W )dFO(z)
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The higher wage depresses labor demand at each firm, n(z,W ). On the other hand, negative selection

pushes up average labor per firm. Under our benchmark parameterization, the wage effect is stronger,

lowering the term under the integral. Since the labor supply N is fixed, the implication is that the

mass of operating firms, MO, must rise with the subsidy to compensate for the fall in the number of

employees per firm.

Overall, the economy is now composed of a larger mass of operating firms, accompanied by a fall

in average firm size, and a positive selection. Recalling that TFP is given by

TFP = M1−α
O︸ ︷︷ ︸

Mass of operating firms

(∫
z

1
1−αdFO(z)

)1−α

︸ ︷︷ ︸
Selection

,

both the increase in the mass and the positive selection lead to an increase in TFP, and hence output.

5.2.2 Model comparison

Figure 11 plots the response of various aggregates to the entry subsidy under both models, expressed

as a fraction of the sunk entry cost ϕE. While in the previous exercise the response of output under

the parametric model was stronger, in this experiment the response is in fact close to 50% larger in

the non-parametric specification. As we show next, selection plays again a central role.
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Figure 11: Impact of a subsidy to entry
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Note: This figure depicts the impact of an entry subsidy (as a portion of the sunk entry cost) in the non-

parametric model (red line) and the AR(1) models (blue line).

Figure 12 plots for both models the original distribution of firm value (blue); the distribution

following a 5% wage increase (green); the average firm value, before and after the subsidy; and the

exit hazard (red). The wage increase lowers the value of the average operating firm which pushes, in

both models, lower-z firms to exit. However, due to the shape of the underlying value distribution, the

exit rate is more sensitive in the non-parametric model. This stronger positive selection effect undoes

some of the wage effect, which explains why the average firm value falls by less. The implication is

that for the average expected value of entry to match the drop in the net cost of entry, the wage has

to rise by more under the empirically-relevant specification.
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Figure 12: Value distributions and exit hazards - Entry subsidy
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Note: For each model: original distribution of firm value (blue), distribution following a 5% increase in the

wage (green), exit hazard (red) and average firm value (blue and green vertical bars).

To understand the relative change in the mass of operating firms between the two models, we turn

our attention to the labor market clearing condition:

N = MO

∫
n(z,W )dFO(z)

The higher response of the wage in the empirical model depresses more drastically labor demand

at each firm. The selection channel, however, has the opposite effect: with relatively more low-z

firms exiting in the empirical model following the subsidy, average labor demand is higher in this

specification, all else equal. The net effect is therefore ambiguous. In our parameterization, it turns

out that the average labor demand per operating firm falls more with the subsidy in the non-parametric

model (bottom-right panel of Figure 12). As a result, the mass of operating firms MO increases by

more, to ensure that labor demand equals labor supply (top-right panel).

Finally, we plot in Figure 13 the contribution of each of selection and the mass of operating firms

to the change in TFP (red line). As discussed earlier, the shape of the distribution implies a stronger

positive selection effect in the non-parametric specification. The operating mass, however, rises more

starkly in the parametric version. On net, the selection channel is stronger, resulting in a larger

impact of the subsidy on TFP and output in the empirical model.
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Figure 13: Aggregate TFP decomposition - Entry subsidy
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Notes: This figure depicts the contribution of various margins to the change of TFP in the two models under

various values of the entry subsidy.

5.3 Robustness

Finally, we consider different robustness exercises for the fixed cost subsidy exercise. First, in terms

of the modelling assumptions, we consider (i) other values of the labor share, α, and (ii) endogenous

labor supply. Second, we repeat the analysis for additional countries (Italy, Portugal, France, and

Norway, which are four other countries with excellent ORBIS coverage) and other treatments of the

data, such as subsamples or different handling of outliers, eliminating MAs, etc. The results of these

comparative statics, summarized in Table C.1 of Appendix C, show that our conclusions are robust

to various alternatives.

6 The empirical relation between bunching and exit

The analysis so far has highlighted the relationship between the degree of clustering of the firm value

distribution and the reaction of exit rates to variations in profitability. In this section we verify

that this relation holds empirically by exploiting sectoral differences in the shape of the firm value

distribution.

First, recall from above that we can obtain a distribution H(W ) of lifetime revenue W by relying
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the transition matrix of incumbents as well as the entry and exit profiles. Moreover, we can decompose

exit as

P(Exit) =
∫

P(Exit|W )dH(W ).

In this purely statistical model, the partial equilibrium, short-run exit rate predicted after a windfall

increase ϵ in lifetime revenue W is given by∫
P(Exit|W + ϵ)dH(W ).

The sensitivity of exit, which is linked to the degree of bunching of the firm value distribution, can

then be feasibly computed as the statistic

B = −∂P(Exit)
∂ϵ

|ϵ=0 = −
∫

∂P(Exit|W )

∂W
dH(W )

measuring coincidence of high density or bunching with steep exit hazards.

We compute our bunching statistic for the nonparametric lifetime revenue distributions of each

2-digit sector in our data. Table D.1 in Appendix D reports that this statistic varies widely across

sectors. Construction, real estate, professional services and retail trade are characterized by much

larger bunching statistics than health care, transportation or manufacturing.

6.1 Estimation

We then use industry data for year t for 4-digit industry j within 2-digit sector s to estimate versions

of the following specification

P(Exit)jst = α + β∆Revenuejst + γ∆Revenuejst × Bs + δBs + εjst

where the model predicts γ < 0 if more bunching is linked to higher exit sensitivity. The maintained

assumption is that the degree of bunching at the 4-digit level is relatively homogeneous within a given

2-digit sector and stable over our sample period.18

Results are presented in Table 4. The first column shows that high revenue growth at the 4-digit

industry level is related to lower exit probabilities. The interaction term indicates that this negative

relationship is stronger in sectors that feature a higher degree of bunching of the firm value distribution,

consistent with the central mechanism of the model. The second and third columns show that this

conclusion is robust to the inclusion of year fixed effects (column 2) as well as the addition of sectoral

fixed effects (column 3). In both cases, the interaction term continues to be negative and statistically

significant at the 10% level. In the last column, we replace the linear interaction assumption with

18Because output in our model is stationary while, naturally, it exhibits positive growth in the data, note that we

are linking the exit rate to the growth rate of sectoral revenue, and not its level. This allows the empirical test to be

consistent with the interpretation of the model.
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a categorical approach: we define a high-bunching sector to be one that has a bunching statistic in

the upper quartile of the bunching distribution. The interaction term is significant at the 5% level,

emphasizing again that bunching affects the mapping between revenue growth and exit rate.

Indeed, as Table 4 shows across different specifications, industries featuring lifetime revenue distri-

butions that are more bunched exhibit higher exit sensitivity to changes in revenue growth, consistent

with our key model mechanism.

Table 4: Bunching and exit

(1) (2) (3) (4)

Exit Ratejt

∆ Revenuejt -0.045*** -0.046*** -0.050*** -0.039***

(0.008) (0.012) (0.011) (0.011)

∆ Revenuejt -0.011* -0.013* -0.014*

× Bunchings (0.006) (0.006) (0.007)

Bunchings 0.428** 0.413**

(0.211) (0.209)

∆ Revenuejt × -0.052**

I(High Bunchings) (0.022)

Fixed Effects - Year Year, Year,

Sector Sector

Industry-Years 1584 1584 1584 1584

Years 2006-13 2006-13 2006-13 2006-13

Note: The table reports OLS estimates of Spanish four-digit industry-level exit rates on industry

revenue growth and two-digit standardized sectoral bunching statistics. High bunching is an indicator

for sectoral bunching above the 75% percentile. Standard errors are clustered at the industry level.

* = 10% level, ** = 5% level, *** = 1% level.

7 Conclusion

In this paper, we show that the standard parametric assumption for firm-level shocks used in the

macro heterogeneous firms literature is not an appropriate representation of the true data generating

process. In particular, we find that non-parametrically solving a model consistent with the firm-level

revenue dynamics we observe in the data has a large impact on the behavior of the model at the macro
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level. In particular, the standard parametric model implies a firm value distribution which is far too

dispersed relative to the firm value distribution consistent with empirical firm dynamics. As a result,

the empirical, non-parametric model generates substantially higher sensitivity of the exit rate to a set

of standard policy experiments. The stronger extensive margin reaction in our non-parametric model

also drives strong selection effects serving to amplify or dampen the response of aggregate output,

depending upon the exact details of the underlying policy. As a result, we conclude that the standard

parametric assumptions adopted in this model are far from innocuous but directly change the macro

implications of firm-level mechanisms.
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Appendix

A Data

A.1 Revenue vs profits

The variable of interest throughout the analysis is firm-level operating revenue (operatingrevenue-

turnover). As mentioned in the text, the facts that (i) the revenue variable is often more populated

and that (ii) it can be more directly linked to the concept of shocks in the model are two of the reasons

we ended using it. Moreover, as can be seen in Table A.1, revenue is a better predictor of both exit

and hiring decisions than alternatives based on accounting profits.

Table A.1: Revenue vs profits

Regressor

ln opre opre Profit EBIT Profit/opre EBIT/opre

Regressand (1) (2) (3) (4) (5) (6)

Exit -0.021*** -9.43e-10*** -3.82e-10** -1.08e-09** -5.37e-07 -0.001***

(0.001) (7.92e-11) (1.60e-10) (5.30e-10) (5.04e-07) (0.002)

R2 0.037 0.020 0.020 0.020 0.020 0.027

Empl. growth 0.021*** 9.86e-10*** 4.24e-10 1.35e-0.9*** 2.25e-07*** 0.0011***

(0.001) (7.39e-11) (2.66e-10) (5.02e-10) (2.92e-07) (0.0013)

R2 0.022 0.017 0.017 0.017 0.017 0.018

Notes: This table reports the results of regressing a Spanish firm’s exit event (top panel) or employment growth

(bottom panel) at time t on revenue or various measures of accounting profit at time t− 1. year × industry fixed

effects are included throughout. “opre” is operating revenue; “Profit” is profit/loss before tax; and “EBIT” is

earnings before interest and taxes. Standard errors are clustered at the industry level. *, **, and *** indicate

significance at the 10%, 5%, and 1% level, respectively.

A.2 Outliers and adjustments to the transitions

In order to avoid that our results are driven by outliers, we trim the observations at the 0.1% and

99.9% thresholds. Also, we need to guard against the possibility that exit or entry might be driven

by missing information in a specific year. First, if for a given year the firm has data for at least one

of the most populated variables (e.g. employment and payroll) but not revenue, then it is dropped
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altogether. Second, we ensure that data “holes” do not generate spurious entry or exit by verifying

that the firm is not ever present in the dataset before (after) the candidate entry (exit) year.19

In order to embed H, HE, and P (Exit|ŷ) into a canonical heterogeneous-firms model, each needs

to be adjusted in order to satisfy some standard technical assumptions employed by that literature.

These assumptions ensure monotonicity of firm value functions and internal consistency of firm exit

policies.

The raw transition distribution H is modified to ensure first-order stochastic dominance: for two

states such that y2 ≥ y1, we require that H(y′|y2) ≤ H(y′|y1) for all y′. Figure A.1 compares the raw

(red) and adjusted (blue) transition matrices for residualized revenue. More specifically, it plots the

density of the distribution H(ŷ′|ŷ) at different value of ŷ.

Figure A.1: Transition matrix of incumbents: original vs. adjusted
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Notes: The figure compares the raw (red) and adjusted (blue) transition matrices for residualized revenue.

Second, we require that both entry and exit P(Exit|ŷ) must be weakly decreasing in ŷ. Figure A.2

compares the raw and processed objects.

19For this reason, our sample period never goes beyond 2014. This allows us to verify that a firm does not show up

again between 2015 and 2019, which is the end of the dataset in the vintage used.
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Figure A.2: Entry and exit: original vs. adjusted
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In both cases, the main takeaway is that the required adjustments are minor and, in some cases

barely discernible. In other words, the raw data from ORBIS are already very close to satisfying the

minimal requirements of our model.

A.3 Firm Size Distribution

The following figure shows the counter CDF of log revenue in the Spanish data. The tail of the

distribution

Figure A.3: Counter CDF of Revenue
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A.4 Empirical Moments

We report in Table A.2 the standard deviation, skewness and kurtosis of demeaned log revenue and

the first-difference of demeaned log revenue under various alternative treatments of the data as well
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Table A.2: Empirical moments under alternative data treatments

Std dev Skewness Kurtosis Std dev Skewness Kurtosis

Baseline 1.548 0.025 4.196 0.656 -0.312 29.212

Before 2009 1.515 0.007 4.182 0.692 -0.071 29.920

After 2009 1.583 0.025 4.224 0.652 -0.482 26.974

Mfg 1.561 0.056 3.862 0.480 -0.829 41.572

Non-Mfg 1.546 0.021 4.250 0.679 -0.285 27.767

Unconsolidated only 1.527 -0.031 4.125 0.655 -0.321 29.160

No M&A 1.545 0.028 4.214 0.655 -0.320 28.937

Year Effects Only 1.699 0.131 3.756 0.660 -0.415 28.765

No Trimming 1.416 -0.008 3.336 0.586 -0.201 21.646

1% Trimming 1.416 -0.008 3.336 0.586 -0.201 21.646

Italy 1.764 -0.660 6.070 0.956 -0.165 33.889

Portugal 1.514 -0.122 5.077 0.736 0.347 28.683

France 1.379 -0.152 6.483 0.604 0.637 72.380

Norway 1.705 -0.233 4.274 0.681 -0.153 26.698

Note: Basic moments of the distributions of demeaned log revenue and the first-difference of demeaned log revenue

under alternative treatments of the data.

as other countries. The conclusions obtained for the benchmark Spanish dataset are unchanged.
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B Solving and Calibrating the Model

In this appendix, we discuss in more detail our approach to solving and quantifying the model.

B.1 Solving the Empirical/Non-parametric Model

Note that the static optimality condition for the input n in equation (13), together with the residu-

alized log revenue grid ŷi, implies a quantile-based grid for profitability shocks zi, i = 1, ..., Nz, where

Nz = Ny and log zi = (1−α)ŷi for all i. Similarly, the empirical objects H(ŷ′|ŷ), HE(ŷ), and P(Exit|ŷ)
imply an incumbent profitability transition F (z′|z), an entry distribution FE(z), and an exit hazard

P(Exit|z) on the profitability grid zi.

We assume that exit occurs for the highest profitability firms in our sample for only exogenous

reasons, i.e., that δ = P(Exit|zNz). In our baseline sample in Spain, the resulting exogenous exit rate

is δ = 3.8%. The remaining parameters to be calibrated in our non-parametric model include only

the labor share α, the household’s rate of time preference β, the fixed labor supply N̄ , and the sunk

entry cost ϕE. Given a parameterization of the model, i.e., a list of these parameters, we solve the

model with an outer loop-inner loop approach as follows.

1. Outer Loop on GE Objects Guess values for the wage W and the entry mass ME, and fix

a GE tolerance ϵGE > 0.

(a) Inner Loop on Firm Value Function Initialize k = 0, guess a value function V (k)(z),

and fix a value function error tolerance ϵV > 0.

i. Compute the implied continuation values ϕ∗
F
(k)(z) via equation (11) and using V (k)(z).

ii. Infer the distribution G(k)(ϕF ) of fixed cost shocks ϕF consistent with ϕ∗
F
(k)(z), V (k)(z),

and the empirical exit hazard by using the mapping

G(k)(ϕ∗
F
(k)(z)) =

1− P(Exit|z)
1− δ

.

iii. Compute an updated value function V (k+1)(z) via the Bellman equation

V (k+1)(z) =

{
maxn (zn

α −Wz)

−
∫ ϕ∗

F
(k)(z)

0
ϕFdG(ϕF )

+ β(1− δ)

∫
V (k)(z′)dF (z′|z)

}
.

iv. If the error in the Bellman equation maxz |V (k+1)(z) − V (k+1)(z)| is smaller than ϵV ,

then the firm value function V (z) = V (k)(z), continuation values ϕ∗
F (z) = ϕ∗

F
(k)(z), and

the fixed cost distribution G(ϕF ) = G(k)(ϕF ) are computed. Otherwise, set k = k + 1

and return to step (1(a)i).

(b) Inner Loop on Firm Distribution Initialize k = 0, guess an operating distribution

F
(k)
O (z) for firms, guess a mass M

(k)
O of operating firms, and fix a tolerance ϵF > 0 for

distributional convergence.
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i. Compute the implied mass of operating firms M
(k+1)
O via

M
(k+1)
O = (1− δ)M

(k)
O

∫
G(ϕ∗

F (z))dF
(k)
O (z) +ME.

ii. Compute the implied distribution of operating firms F
(k+1)
O (z) via

F
(k+1)
O (z′) = (1− δ)

M
(k)
O

M
(k+1)
O

∫
G(ϕ∗

F (z))F (z′|z)dF (k)
O (z) +

ME

M
(k+1)
O

FE(z
′).

iii. If the errors in the operating mass update |M (k+1)
O −M

(k)
O | and distributional update

maxz |F (k+1)
O (z)− F

(k)
O (z)| are both less than ϵF , then the operating mass MO = M

(k)
O

and operating distribution FO(z) = F
(k)
O (z) are computed. Otherwise, set k = k + 1

and return to step (1(b)i).

2. Compute the implied value to entry VE via

VE =

∫
V (z)dFE(z).

3. Compute the implied labor demand N via

N = MO

∫
n∗(z)dFO(z),

where n∗(z) is optimal static labor demand for an individual firm with profitability z.

4. If the error in the free entry condition |VE − ϕE| and the error in the labor market clearing

condition |N−N̄ | are both less than the GE tolerance ϵGE, then the model is solved. Otherwise,

update your guesses for the wage and entry mass and return to step (1).

When the algorithm above is complete, the non-parameteric version of our model is solved in a

manner not only consistent with general equilibrium but also, by construction, with the observed

revenue transitions, the entry distribution, and the exit hazard measured non-parametrically.

A few additional technical details are useful. We implement all of the calculations above con-

tinuously, linearly interpolating value functions, fixed cost distributions, operating distributions, and

continuation values on the grid zi. Where integration is required, we use Simpson quadrature with

densities fO(z), fE(z), and f(z′|z) consistent with linear interpolation of the CDFs FO(z), FE(z),

and F (z′|z) in a manner which preserves the empirical weight on equal-mass intervals containing the

revenue quantiles ŷi. Because the free entry condition is separable from the entry mass ME, we first

employ bisection on the aggregate wage W to ensure that the free entry condition is satisfied, then we

update ME so that (3) is exactly satisfied. In our baseline, we employ Ny = Nz = 101 grid points or

quantiles, and on a 2017 iMac Pro model solution takes around a minute or two in MATLAB without

requiring aggressive parallelization.
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B.2 Solving the AR(1)/Parametric Model

In our AR(1) or parametric model version, the parameters to be calibrated include the labor share

α, the household’s rate of time preference β, the fixed labor supply N̄ , the sunk entry cost ϕE, the

upper bound ϕ̄F of the fixed cost distribution G(ϕF ) = U(0, ϕ̄F ), the persistence of the lognormal

AR(1) profitability process ρ, the conditional variance of the lognormal AR(1) profitability process

σ2, and the mean of the lognormal entry distribution µE. The exogenous exit hazard δ is carried over

identically from our non-parametric model solution as described above. Given a parameterization of

the model, i.e., a list of these parameters, we solve the model with an outer loop-inner loop approach

as follows.

1. Outer Loop on GE Objects Guess values for the wage W and the entry mass ME, and fix

a GE tolerance ϵGE > 0.

(a) Inner Loop on Firm Value Function Initialize k = 0, guess a value function V (k)(z),

and fix a value function error tolerance ϵV > 0.

i. Compute an updated value function V (k+1)(z) via the Bellman equation

V (k+1)(z) =

{
maxn (zn

α −Wz)

−
∫ ϕ∗

F
(k)(z)

0
ϕFdG(ϕF )

+ β(1− δ)

∫
V (k)(z′)dF (z′|z)

}
.

ii. If the error in the Bellman equation maxz |V (k+1)(z) − V (k+1)(z)| is smaller than ϵV ,

then the firm value function V (z) = V (k)(z) is computed. Otherwise, set k = k + 1

and return to step (1(a)i).

(b) Inner Loop on Firm Distribution Initialize k = 0, guess an operating distribution

F
(k)
O (z) for firms, guess a mass M

(k)
O of operating firms, and fix a tolerance ϵF > 0 for

distributional convergence.

i. Compute the implied mass of operating firms M
(k+1)
O via

M
(k+1)
O = (1− δ)M

(k)
O

∫
G(ϕ∗

F (z))dF
(k)
O (z) +ME.

ii. Compute the implied distribution of operating firms F
(k+1)
O (z) via

F
(k+1)
O (z′) = (1− δ)

M
(k)
O

M
(k+1)
O

∫
G(ϕ∗

F (z))F (z′|z)dF (k)
O (z) +

ME

M
(k+1)
O

FE(z
′).

iii. If the errors in the operating mass update |M (k+1)
O −M

(k)
O | and distributional update

maxz |F (k+1)
O (z)− F

(k)
O (z)| are both less than ϵF , then the operating mass MO = M

(k)
O

and operating distribution FO(z) = F
(k)
O (z) are computed. Otherwise, set k = k + 1

and return to step (1(b)i).
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2. Compute the implied value to entry VE via

VE =

∫
V (z)dFE(z).

3. Compute the implied labor demand N via

N = MO

∫
n∗(z)dFO(z),

where n∗(z) is optimal static labor demand for an individual firm with profitability z.

4. If the error in the free entry condition |VE − ϕE| and the error in the labor market clearing

condition |N−N̄ | are both less than the GE tolerance ϵGE, then the model is solved. Otherwise,

update your guesses for the wage and entry mass and return to step (1).

Note that unlike in the empirical or non-parametric version of the model, the fixed cost distribution

G(ϕF ) = U(0, ϕ̄F ) is predetermined. Also note that the entry and transition distributions FE(z) and

F (z′|z) are parametric, following conventional lognormal processes converted to a uniform profitability

grid as in Tauchen (1986). Just as in the non-parametric solution of the model, however, we continue

to solve the model continuously, storing value functions via linear interpolation, computing integrals

via Simpson quadrature, and evaluating entry, operating, and transition distributions using linear

interpolation of the CDFs FE(z), FO(z), and F (z′|z). In our baseline, we again employ Nz = Ny = 101

points for our interpolation procedures, and model solution takes around a minute or two on a 2017

iMac Pro in MATLAB without aggressive parallelization.

B.3 Calibrating the Model

There are two model parameters which we fix or calibrate externally before engaging in a moment-

matching exercise. We set α = 2/3 to generate a conventional labor share of 2/3, we set β = 1/1.04

to be consistent with a conventional 4% real interest rate and an annual solution of the model, and we

set N̄ to be equal to the aggregate employment rate (resulting in N̄ = 0.5974 in our baseline Spanish

sample and comparable values for our other samples). As noted above, we also set the exogenous exit

hazard δ based on the observed exit rate of the largest firms in our empirical sample (resulting in

δ = 3.8% for our baseline Spanish sample and comparable values for our other samples). Each of the

versions of our model, non-parametric and parametric, is solved holding these externally calibrated

parameters fixed.

Non-parametric Calibration With the externally calibrated parameters listed above fixed, only

the sunk entry cost ϕE must be calibrated for the non-parametric model. We choose the value of

ϕE to match the observed average number of employees per firm. The number of employees per firm

declines in the wage W , which adjusts to satisfy the free entry condition as the parameter ϕE is

shifted.
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Parametric Calibration With the externally calibrated parameters above fixed, we must still

fix the values of the lognormal AR(1) profitability process (ρ, σ2), the mean of the lognormal entry

distribution µE, the upper bound ϕ̄F of the fixed cost distribution G(ϕF ) = U(0, ϕ̄F ), as well as the

sunk entry cost ϕE. Following convention in the parametric firm dynamics literature, we first set ρ to

the autocorrelation of the profitability process log z inferred from our observed revenue series ŷ, and

we set σ2 to match the observed variance of log z.

Then, with ρ and σ2 fixed, we choose the remaining three parameters (µE, ϕ̄F , ϕE) to jointly

match three moments. As in the non-parametric model, we match (i) the observed average number

of employees per firm. We also match (ii) the observed exit rate P(Exit) which naturally moves with

the fixed cost upper bound ϕ̄F . Finally, we match (iii) the mean difference between log revenue for

entering and operating firms, which naturally moves with the mean of the entry distribution µE. One

might wonder why we did not target moments (ii) nor (iii) in our non-parametric model solution. But

the non-parametric model matches both of these moments by construction, since both moments are

implied by the combination of incumbent revenue transitions, exit hazards, and the entry distribution

which are fully matched in the non-parametric model.

B.4 Comparison of entry and exit

We extract from the data a collection of incumbent revenue transitions H(ŷ′|ŷ), an entry distribution

HE(ŷ), and an exit hazard P(Exit|ŷ) for a collection of residualized log revenue quantiles ŷi, i =

1, ..., Ny. The red lines in Figure B.1 plot the exit hazard (left panel) and the entry distribution

(right panel), while the blue lines report comparable objects within our calibrated AR(1)/parametric

version of the model discussed later.

Figure B.1: Exit and entry hazards
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C Alternative datasets and approaches

Table C.1: Relative impacts of subsidizing 5% of fixed costs

Exit Rate Output

Baseline 3.0701 0.6845

Panel A: Alternative modelling assumptions

Endogenous Labor Supply 3.0660 0.8125

Higher α 3.0728 0.6872

Lower α 3.0765 0.6859

Panel B: Alternative datasets

Before 2009 2.5787 0.7095

After 2009 2.4338 0.6176

Manufacturing Only 3.6506 0.4211

Non-Manufacturing Only 2.7832 0.7108

Unconsolidated Accounts 3.1550 0.7109

Excluding M&A 3.0750 0.7161

Year Effects Only 2.8076 0.7015

No Trimming 3.3206 0.7883

Trimming at 1% and 99% 2.6755 0.7461

Italy 3.9723 0.7040

Portugal 5.8445 0.7905

France 1.8992 0.5814

Norway 2.8302 0.6560

Note: The table reports relative changes at the aggregate level from subsidizing 5% of mean fixed costs in the

empirical model versus the parametric model. Panel A reports results under various alternative modelling assump-

tions, while Panel B considers calibrations based on different datasets. For each experiment, as listed in the first

column, we calculate the change in the exit rate and output vis-a-vis the original values in the nonparametric and

AR1 models. We then report the ratio of these two changes; the second column reports these values for the exit

rate, while the third column reports these values for output.
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C.1 Manufacturing vs non-manufacturing

Figure C.1: Manufacturing - Impact of a fixed operating cost subsidy
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Note: This figure depicts the impact of a fixed operating cost subsidy in the non-parametric model (red line)

and the AR(1) models (blue line).
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Figure C.2: Non-manufacturing - Impact of a fixed operating cost subsidy
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Note: This figure depicts the impact of a fixed operating cost subsidy in the non-parametric model (red line)

and the AR(1) models (blue line).

12



C.2 Italy

Figure C.3: Italy - Impact of a fixed operating cost subsidy
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Note: This figure depicts the impact of a fixed operating cost subsidy in the non-parametric model (red line)

and the AR(1) models (blue line).
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Figure C.4: Italy - Impact of a subsidy to entry
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Note: This figure depicts the impact of an entry subsidy (as a portion of the sunk entry cost) in the non-

parametric model (red line) and the AR(1) models (blue line).

14



C.3 Portugal

Figure C.5: Portugal - Impact of a fixed operating cost subsidy
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Note: This figure depicts the impact of a fixed operating cost subsidy in the non-parametric model (red line)

and the AR(1) models (blue line).
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Figure C.6: Portugal - Impact of a subsidy to entry
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Note: This figure depicts the impact of an entry subsidy (as a portion of the sunk entry cost) in the non-

parametric model (red line) and the AR(1) models (blue line).
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D Bunching statistic

Table D.1: Bunching statistic at the sectoral level

Bunching statistic NAICS Sector

0.091 Construction, 23

0.0543 Real Estate, 53

0.0492 Professional Technical Services, 54

0.0484 Retail Trade, 44

0.0453 Retail Trade, 45

0.0447 Information, 51

0.0401 Manufacturing, 33

0.0399 Wholesale Trade, 42

0.0399 Arts & Entertainment, 71

0.0392 Administrative Support Services, 56

0.0389 Accommodation and Food Services, 72

0.0376 Manufacturing, 32

0.0371 Educational Services, 61

0.0369 Other Services, 81

0.0351 Manufacturing, 31

0.0324 Transportation and Warehousing, 48

0.0288 Finance and Insurance, 52

0.0236 Health Care and Social Assistance, 62

Note: The bunching statistic at the sectoral level is computed as described in Section 6.
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